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Çözümler

1. a, b, c pozitif tam sayılar olmak üzere,

2a + a2 − b2, 2b + b2 − c2 ve 2c + c2 − a2

sayılarının üçünün de tamkare olmasını sağlayan tüm (a, b, c) üçlülerini bulunuz.

Çözüm: Cevap: Tüm n pozitif tam sayıları için (a, b, c) = (2n, 2n, 2n).

İlk olarak min(a, b, c) = 1 durumunu inceleyelim. Genelliği bozmadan c = 1 olsun. Bu durumda
3 − a2 sayısı tamkare olmalıdır, ancak bu koşulu sağlayan bir a pozitif tam sayısının bulunmadığı
açıktır. Yani a, b, c > 1 olmalıdır. 2a + a2 − b2 = x2, 2b + b2 − c2 = y2 ve 2c + c2 − a2 = z2 olsun.

Bu sayıların üçünü de toplarsaki 2a+2b+2c = x2+y2+z2 bulunur. a, b, c ≥ 2 olduğu için, eşitliğin
sol tarafı 4 ile bölünür, bu durumda x2+y2+z2 de dörde bölünmelidir. Tamkarelerin 4 ile bölümünden
halan 0 veya 1 olduğu için, x2 + y2 + z2 sayısının dörde bölümnmesi için x2 ≡ y2 ≡ z2 ≡ 0 (mod 4)
olmalıdır. Böylece, x, y, z sayılarının üçü de çifttir ve a ≡ b ≡ c ≡ 0 (mod 2) bulunur. Böylece iki
durum bulunur.

(i) a, b, c tekse: a2, b2, c2 sayılarının 3’e bölümünden kalanları 0 veya 1 olabilir, yani alabilecekleri iki
farklı değer vardır. Dolayısıyla, bu üç sayıdan ikisinin 3 ile bölümünden kalan eşittir. Genelliği
bozmadan a2 ≡ b2 (mod 3) olsun. Bu durumda, 2a+a2− b2 ≡ 2a ≡ 2 (mod 3) bulunur, yani bu
sayı tamkare olamaz. Dolayısıyla bu durumda sorudaki koşulu sağlayan (a, b, c) üçlüsü yoktur.

(ii) a, b, c çiftse: Genelliği bozmadan bu sayılardan en büyüğü a olsun. Eğer a > b ise,

x2 = 2a + a2 − b2 > 2a = (2a/2)2

bulunur. x sayısı çift bir tamkare olduğu için, x > 2a/2 ise x ≥ 2a/2 + 2 olmalıdır. Böylece

2a + a2 ≥ 2a + a2 − b2 = x2 ≥ (2a/2 + 2)2 = 2a + 2a/2+2 + 4

bulunur. Ancak a ≥ 8 için 2a/2+2 + 4 > a2 olduğu için, bunun sağlanması mümkün değildir.
Böylece a ≤ 6 olmalıdır. Ancak bu durumda da b = 2, 4 durumlarında 2a + a2 − b2 tamkare
olmayacaktır.

Dolayısıyla a = b olmalıdır. Bu durumda b ≥ c olacağı için, benzer şekilde 2b + b2 − c2 ifadesini
de incelersek b = c bulunur. Böylece, sorudaki koşulu sağlayan tek çözümler a = b = c olarak
bulunur ve ispat biter.



2. m ve n pozitif tam sayılar olmak üzere, m × n satranç tahtası, bu tahtanın birim karelerinden
oluşan 1 × 2 ve 2 × 1 dikdörtgenlerle, herhangi iki dikdörtgen ortak birim kare içermeyecek şekilde
tamamen kaplanmıştır. 1× 2 dikdörtgenlerin kapladığı birim kareler kırmızıya, 2× 1 dikdörtgenlerin
kapladığı birim kareler maviye boyanıyor. Bu satranç tahtasında bir tarafı mavi bir tarafı kırmızı olan
birim kenarların sayısının çift olduğunu gösteriniz.

Çözüm: Bu tahtada 1 × 2 dikdörtgenlerin kapladığı karelere 1, 2 × 1 dikdörtgenlerin kapladığı
karelere −1 yazalım. Tahtanın kenarları üzerinde olmayan her bir birim kenara ise, ait olduğu birim
karelerdeki sayıların çarpımını yazalım. Bu durumda, soruda istenen koşul −1 yazılı birim kenar
sayısının çift olduğuna denktir. O halde, bu birim kenarlardaki yazdığımız tüm sayıların çarpımının 1
olduğunu göstermeliyiz.

Bu sayıların tümünün çarpımını inceleyelim. Bu çarpımda köşedeki birim karelerde yazan sayıların
kareleri, tahtanın kenarında yer alıp köşe olmayan karelerde yazan sayıların küpü, diğer birim karelerde
yazan sayıların ise dördüncü kuvveti yer alır. Çift kuvveti alınan sayıların bu çarpıma katkısı 1
olduğundan ötürü, tahtanın kenarında yer alıp köşe olmayan karelerde yazan sayıların çarpımının 1
olduğunu göstermeliyiz. Dolayısıyla, tahtanın kenarlarında yer alıp köşe olmayan mavi kare sayısının
çift olduğunu göstermeliyiz.

En üst satırdaki 1×2 dikdörtgen sayısı a, en alt satırdaki 1×2 dikdörtgen sayısı b, en sol sütundaki
2 × 1 dikdörtgen sayısı c, en sağ sütundaki 2 × 1 dikdörtgen sayısı d ve köşe birim karelerden mavi
olanların sayısı e olsun. O zaman şekilde gösterilen, kenarlardaki dört dikdörtgende yazan −1 sayısı

(n− 2a) + (n− 2b) + 2c+ 2d− 2e = 2(n− a− b+ c+ d− e)

olur. Bu sayı çifttir, dolayısıyla ispat biter.

3. a ve b verilmiş gerçel sayılar olsun. Her x, y ∈ R için

f(x+ f 100(y) + a) = y + f 2025(x) + b

koşulunu sağlayan tüm f : R → R fonksiyonlarını bulunuz.

Not. k bir pozitif tam sayı olmak üzere, fk(x) = f(f(· · · f︸ ︷︷ ︸
k kez

(x))) olarak tanımlanıyor.

Çözüm: Cevap: f(x) = x+
a− b

1924
.

İddia 1: Her k ∈ Z+ için fk(x) fonksiyonu birebir ve örtendir.



İspat: y sayısı değişirken soruda verilen denklemin sağ tarafı herhangi bir gerçel sayı değerini
alabilir. Bu durumda f fonksiyonu örten olur. Eğer f(x1) = f(x2) ise, ana denklemde y = x1 ve
y = x2 yazarsak x1 = x2 elde edilir. Böylece f fonksiyonu birebir bulunur.

İddiayı k üzerine tümevarım uygulayarak gösterelim. k = 1 için doğru olduğunu gösterdik.
k ≥ 2 için fk−1 fonksiyonu birebir ve örtense, fk fonksiyonunun da birebir ve örten olduğunu
gösterelim. Her y ∈ R için, örtenlikten dolayı fk−1(z) = y olacak şekilde bir z sayısı, ve f(x) = z
olacak şekilde bir x sayısı bulunur. Bu durumda fk(x) = y olur ve f fonksiyonu örten bulunur. Eğer
fk(x1) = fk(x2) ise f fonksiyonu birebir olduğu için fk−1(x1) = fk−1(x2) olur ve fk−1 birebir olduğu
için x1 = x2 bulunur, dolayısıyla fk fonksiyonu da birebir bulunur. □

İddia 2: Her x ∈ R için f 2024(x)− x sabittir.

İspat. Ana denklemde y = −b koyalım. f fonksiyonu birebir olduğu için her x ∈ R için

x+ f 100(−b) + a = f 2024(x)

gelir. Dolayısıyla f 2024(x)− x = f 100(−b) + a yani bir sabit sayı bulunur. □

c = f 100(−b) + a olsun.

İddia 3: Her x ∈ R için f 101(x)− x sabittir.

İspat. Ana denklemde x = −a koyalım. Her x ∈ R için

f 101(y) = y + f 2025(−a) + b

gelir. Dolayısıyla f 101(x)− x = f 2025(−a) + b yani bir sabit sayı bulunur. □

d = f 2025(−a) + b olsun.

İddia 4: Her x ∈ R için f(x)− x sabittir.

Proof. ebob(101, 2024) = 1 olduğu için 1 = 101u− 2024v olan u, v pozitif tam sayıları bulunur. Bu
durumda

f(x) + cv = f 2024v(f(x)) = f 101u(x) = x+ du

olur ve f(x)− x = du− cv, yani bir sabit sayı bulunur. □

e = du − cv olsun. f(x) = x + e olur. Bu durumda f 100(x) = x + 100e ve f 2025(x) = x + 2025e
olur. Bunları soruda verilen denklemde yerine yazarsak x+ y + 100e+ a+ e = y + x+ 2025e+ b olur.

Yani e =
a− b

1924
bulunur ve ispat tamamlanır.

4. a1, a2, . . . , a2025 gerçel sayılar olmak üzere, her 1 ≤ i < j ≤ 2025 için, birinci tahtaya 1 − |ai − aj|
sayısı, ikinci tahtaya |ai + aj| − 1 sayısı yazılıyor. Hangi (a1, a2, · · · , a2025) 2025-lileri için, her gerçel
sayı her iki tahtaya da eşit sayıda yazılır?

Çözüm: Cevap: x ∈ [−1, 1] aralığında bir gerçel sayı olmak üzere (x,±1,±1,±1, . . . ,±1) 2025−lisi
ve bu 2025−lilerin bütün permütasyonları.



Tarif edilen formda olan bir (ai) 2025−lisi için, 1 − |ai − aj| = |ai + aj| − 1 eşitliği her zaman
sağlanır. Dolayısıyla, iki tahtaya da yazılan tüm sayılar aynı olur.

Şimdi, sorudaki koşulu sağlayan tüm 2025−lilerin bu formda olduğunu gösterelim. Her iki tahta
için, bu tahtalarda yazılan sayıları toplayalım.∑

i<j

1− |ai − aj| =
∑
i<j

|ai + aj| − 1 =⇒
∑
i<j

(|ai − aj|+ |ai + aj|) = 20252 − 2025

elde edilir. Her x, y gerçel sayı ikilisi için

|x+ y|+ |x− y| = 2max{|x|, |y|}

özdeşliği sağlanır. Bu özdeşliği eşitliğin sol tarafında kullanırsak∑
i<j

(|ai − aj|+ |ai + aj|) =
∑
i<j

2max{|ai|, |aj|} = 20252 − 2025

elde edilir. Sol tarafta
20252 − 2025

2
tane terim bulunduğu için, bu sayıların tamamı 2 den küçük

olamaz. Böylece max{|ai|} ≥ 1 olmalıdır.

Genelliği bozmadan, |a1| = max{|ai|} diyelim. |a1| = 1 + a ve a ≥ 0 olsun. Her 1 ≤ i, j ≤ 2025
için, ikinci tahtada yazılan hiçbir sayı −1 den küçük olamaz, böylece 1−|ai−aj| ≥ −1 ve |ai−aj| ≤ 2
bulunur. Öte yandan, ilk tahtaya yazılan hiçbir sayı 1 den büyük olamayacağı için |ai + aj| − 1 ≤ 1 ve
|ai + aj| ≤ 2 bulunur. Bu durumda, tüm j ̸= i indisleri için |aj| ≤ 1 − a olmalıdır, aksi durumda ya
|a1 + aj| > 2 ya da |a1 − aj| > 2 sağlanırdı. Öte yandan, bunu∑

i<j

2max{|ai|, |aj|} = 20252 − 2025

eşitliğinde kullanırsak, i = 1 için max{|a1|, |aj|} = 1 + a ve i ̸= 1 olan tüm i < j ikilileri için
max{|ai|, |aj|} ≤ 1− a olduğundan ötürü

2025 · 2024 =
∑
i<j

2max{|ai|, |aj|} ≤ 4048(1 + a) + (20242 − 2024)(1− a) = 2024(2025− 2021a)

bulunur. Eşitsizliğin sağlanması için a = 0 olmalıdır, yani 1 = max{|ai|} bulunur. Aynı zamanda,
yukarıdaki eşitliğin sağlanması için 2max{|ai|, |aj|} = 1 her zaman sağlanmalıdır. Böylece, sorudaki
koşulu sağlayan bir 2025−li için en az 2024 tane terimin mutlak değeri 1 olmalıdır, ve geri kalan
terimin mutlak değeri en fazla 1 olmalıdır. Bu da cevapta tarif edilen tüm 2025−lilere denktir ve
ispat tamamlanır.

5. Bir ABC üçgeninde A, B, C noktalarından indirilen yükseklik ayakları sırasıyla D, E, F ve
diklik merkezi H olsun. H noktasından geçen bir ℓ doğrusu EF , DF , DE doğruları ile sırasıyla
X, Y , Z noktalarında kesişiyor. XBF ve XCE üçgenlerinin çevrel çemberlerinin ikinci kesişim
noktası A1, Y CD ve Y AF üçgenlerinin çevrel çemberlerinin ikinci kesişim noktası B1, ZAE ve ZBD
üçgenlerinin çevrel çemberlerinin ikinci kesişim noktası C1 olsun. A1D, B1E ve C1F doğrularının
noktadaş olduğunu gösteriniz.
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Çözüm: Düzlemdeki herhangi doğrusal olmayan A0, B0, C0 noktaları için, (A0B0C0) ile A0B0C0

üçgeninin çevrel çemberini gösterelim. AX doğrusu ileXBF üçgeninin çevrel çemberinin ikinci kesişim
noktası A′

1 olsun. X,A′
1, B, F noktalarının ve B,C,E, F noktalarının çemberdeşliğinden dolayı

∠XA′
1B = ∠XFB = ∠ACB =⇒ A′

1 ∈ (ABC)

bulunur.

Benzer şekilde, AX doğrusu ile XCE üçgeninin çevrel çemberinin ikinci kesişim noktası da (ABC)
üzerinde bulunur. Böylece, AX doğrusunun ABC üçgeninin çevrel çemberini ikinci kez kestiği nokta,
hem (XBF ) hem de (XCE) üzerinde bulunur. Dolayısıyla A′

1 ≡ A1 olmalıdır ve

A1 = AX ∩ (XBF ) = AX ∩ (XCE) ∈ (ABC)

bulunur. Benzer sonuç, B1 ve C1 noktaları için de geçerlidir

Şimdi A1D, B1E ve C1F doğrularının (ABC) üzerinde kesiştiğini gösterelim.

A1D ∩ (ABC) = {A1, T} olsun. A1 noktası (XBF ) üzerinde olduğu için, A noktasının (XBF )
çemberine göre kuvveti, AA1.AX = AF.AB olur. B,D,H, F noktaları da çemberdeş olduğu için,
A noktasının bu çembere göre de kuvvetini alırsak AA1.AX = AF.AB = AH.AD olur. Böylece
X,A1, H,D noktaları çembersel bulunur. Benzer şekilde X,B1, H,E ve X,C1, H, F de çembersel
bulunur

(AA1BC), (XA1HD) ve (BFHD) çembersellikleri kullanıp açı taşıyarak

∠CA1T = ∠CA1X − ∠XA1T = (180− ∠ABC)− ∠XHD = ∠FHD − ∠XHD = ∠FHX



elde edilir.

Öte yandan, X,C1, H, F çemberselliğinden ve C,H, F doğrusallığından ötürü

∠CC1F = ∠CHZ = ∠FHX

elde edilir. Böylece ∠CC1F = ∠CA1T bulunur. Dolayısıyla C1F doğrusu (ABC) yi T noktasında
kesmelidir ve T ∈ C1F bulunur. Benzer şekilde T ∈ B1E bulunur, böylece A1D, B1E, C1F doğruları
T noktasında kesişirler ve ispat biter.

6. İki tamkarenin toplamı şeklinde yazılabilen sayıların kümesi S olsun. Tam sayı katsayılı bir P
polinomu, her n negatif olmayan tam sayısı için

P (n) ∈ S ⇐⇒ n ∈ S

koşulunu sağlıyorsa, P polinomunun derecesinin tek olduğunu gösteriniz.

Çözüm: p bir asal sayı ve n bir tam sayı olmak üzere, vp(n) ile p sayısının n sayısını bölen en büyük
kuvvetini gösterelim. Bir n pozitif tam sayısı ve p asal sayısı için, p ≡ 3 (mod 4) ise ve vp(n) bir
tek sayıysa, p asalı n sayısını bozar diyelim. Bir pozitif tam sayının S kümesinde yer alması için
gerek ve yeter koşulun bu sayıyı bozan bir asal sayı olmamasıdır. Bunu çözüm boyunca tekrar tekrar
kullanacağız.

P polinomunun sabit olmadığı, dolayısıyla P ≡ 0 olmadığı açıktır. Böylece, bu polinom yeterince
büyük n tam sayıları için S kümesinden pozitif değerler alacaktır, dolayısıyla baş katsayısı pozitif
olmalıdır. Böylece bir N tam sayısı için, her n ≥ N değerinde P (n) > 1 olur.

İddia 1: Bir q asal sayısı P (m) sayısını bozarsa, m sayısını da bozar.

İspat: P (m) sayısını bozan bir q ≡ 3 (mod 4) asal sayısını alalım. Bir k ≥ 1 pozitif tam sayısı için
P (m) = q2k−1t ve (q, t) = 1 olsun. Eğer q | m ise, Bezout Teoreminden dolayı q | m | P (m) − P (0)
olduğu için q | P (0) olur. Eğer q ∤ m ise, (q,m) = 1 ve (q, 4) = 1 olduğu için, Dirichlet Teoremi ve
Çinli Kalan Teoreminden dolayı p ≡ 1 (mod 4) ve p ≡ m (mod q2k) olan bir asal sayı bulunur. Böyle
bir p asal sayısı alalım. Bezout Teoreminden dolayı, q2k | p−m | P (p)−P (m) olur. vq(P (m)) = 2k−1
olduğu için, vq(P (p)) = 2k − 1 olmalıdır. Dolayısıyla, P (p) /∈ S ve böylece p /∈ S olmalıdır. Ancak
p ≡ 1 (mod 4) bir asal sayı olduğu için p ∈ S olur, sorudaki koşuldan dolayı bu mümkün değildir.
Dolayısıyla, q | m olmalıdır. □

İddia 2: P (0) = 0 olmalıdır.

İspat: m /∈ S ve m ≥ N bir pozitif tam sayı olsun. Sorudaki koşuldan dolayı, P (m) sayısını
bozan bir q ≡ 3 (mod 4) asal sayısı bulunmalı. İddia 1’den dolayı, q | m olduğunu biliyoruz. Bezout
Teoreminden dolayı q | m | P (m) − P (0) ve q | P (0) bulunur. m sayısını m ≡ 3 (mod 4) formunda
herhangi bir asal sayı seçersek, m sayısını bozan tek asal sayı kendisi olduğu için q = m bulunur.
Böylece, bu formdaki tüm asal sayılar P (0) sayısını böler. Bu formda sonsuz çoklukta asal sayı
bulunduğu ve 0 dışında hiçbir sayı sonsuz çoklukta asal sayıya bölünemeyeceği için P (0) = 0 bulunur.
□

İddia 3: Bir p asal sayısı m sayısını bozarsa, P (m) sayısını da bozar.



İspat: Bir k pozitif tam sayısı için m = p2k−1n ve (p, n) = 1 olsun. p asal sayısının P (m) asal
sayısını bozmadığını varsayalım. Bir ℓ ≥ 0 tam sayısı için P (m) = p2ℓt ve (p, t) = 1 olsun. s > k, ℓ
bir pozitif tam sayı ve A bir tam sayı olsun. Herhangi bir A pozitif tam sayısı için P (m + p2sA)
sayısına bakalım. P (m + p2sA) ≡ P (m) ≡ p2ℓt (mod p2s) olur. Böylece vp(P (m + p2sA)) = 2ℓ
bulunur. P (m + p2sA) = p2ℓB ve (B, p) = 1 olsun. Öte yandan, m + p2sA = p2k−1(n + p2s−2k+1A)
olur. Hem (n, p) = 1 hem de (p, 4) = 1 olduğu için, Dirichlet ve Çinli Kalan Teoreminden dolayı q ≡ 1
(mod 4) ve q ≡ −n (mod p2s−2k+1) koşullarını sağlayan sonsuz çoklukta asal sayı bulunur. A sayısını
n + p2s−2k+1A = q bu koşulları sağlayan bir asal sayı ve p2k−1q > N olacak şekilde seçelim. Böylece,
P (p2k−1q) = p2ℓB olur. p2k−1q /∈ S olduğundan ve sorudaki koşuldan ötürü p2ℓB /∈ S olmalıdır. Bu
durumda p2ℓB sayısını bozan bir r ̸= p asal sayısı bulunmalıdır. Ancak, İddia 1’den ötürü böyle bir
asal sayı p2k−1q sayısını da bozmalıdır, yani r = p olmalıdır. Bu da bir çelişki olduğundan ötürü, m
sayısını bozan bir asal sayı P (m) sayısını da bozmalıdır. □

Bir Q polinomu ve r pozitif tam sayısı için P (x) = xrQ(x) ve Q(0) ̸= 0 olsun. r çiftse Q polinomu
da sorudaki şartı sağlar. Çünkü, bir pozitif tam sayıyı tamkare bir sayıyla çarpmak veya tamkare
bir sayıya bölmek S kümesinde olma durumunu etkilemez. Fakat bu durumda İddia 2’den dolayı
Q(0) = 0 olacaktır, dolayısıyla r tek sayı olmalıdır. P (x) sayısını bozan tüm asallar ve x sayısını
bozan asallar birebir aynı olduğu için, yeterince büyük tüm x pozitif tam sayıları için Q(x) polinomu
S kümesinden değerler almalıdır. Aynı zamanda bir x tam sayısı için |Q(x)| sayısının da S kümesinde
yer almalıdır. Çünkü, bir p ≡ 3 (mod 4) asal sayısı için vp(|Q(n)|) = 2k − 1 olsaydı, tüm A pozitif
tam sayıları için vp(Q(n + p2kA)) = 2k − 1 olurdu, ancak A sayısını n + p2kA sayısı pozitif olacak
kadar büyük seçersek, Q(n+ p2kA) /∈ S bulunurdu, fakat bunun doğru olmadığını biliyoruz.

Şimdi Q polinomunun derecesinin çift olduğunu gösterip soruyu bitirelim. Q polinomunun
derecesinin tek olduğunu varsayalım. Böylece, Q polinomu yeterince büyük tüm pozitif sayılar için
pozitif, ve yeterince büyük tüm negatif sayılar için negatif değerler alır. Yeterince büyük bir n tam
sayısı için Q(n) = 2at ve t pozitif tek tam sayı olsun. 2at ∈ S olduğu için t ≡ 1 (mod 4) olmalıdır.
Bu durumda, yeterince büyük tüm m pozitif tam sayıları için Q(n − 2a+2m) sayısı negatif olur.
Ayrıca, Q(n − 2a+2m) ≡ Q(n) ≡ 2at (mod 2a+2) olduğundan ötürü bir s negatif tek tam sayısı için
Q(n − 2a+2m) = 2as olmalıdır. Bezout Teoreminden dolayı 2a+2 | Q(n) − Q(n − 2a+2m) = 2a(t − s)
olur, yani 4 | t− s bulunur ve s ≡ 1 (mod 4) bulunur. Ancak bu durumda, |Q(n− 2a+2m)| = 2a(−s)
olur ve −s ≡ 3 (mod 4) olduğu için −s ∈ Z+ sayısını bozan bir asal sayı bulunur. Ancak bu durumun
gerçekleşemeyeceğini göstermiştir. Dolayısıyla, bu bir çelişkidir ve Q polinomunun derecesi çift
olmalıdır. Böylece P polinomunun derecesi tek olur ve ispat tamamlanır.


